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ABSTRACT 

Self-consistent "PH cillculations have been perforrr.cd to 

provide electron eigenvalues and wave functions for several 

systems. within the Xa approximation for the exchange and 

within the muffin-tin approximation for generating and utilizing 

the effective one-electron potential. This information has been 

used to calculate cohesive energies for metallic cesium and 

vanadium and to calculate the isomorphic phase transition of 

cesium. The formal magnetization of vanadium as a function of 

its lattice par~mcter has been ex~mined and a magnetic trans1-

tion found. r'\omentum matrix elements for titanium carbide and 

niobium carbide have . been estimated to provide an approximate 
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expression for the energy dependence of the soft x-ray valcnce­

band emission jn terms of partial densities of states, allowing 

interpretation of the experimental data in terms of the calculated 

electronic properties. 

* Supported in part by the rlational Sci ence Foundation. 

tBased in part on diss ertations presented by F. I~. Averill 

and T. M. Hattox to the Departme nt of Physics and Astronomy. 

University of Florida, in partial fulfillment of the 

requirements for the Ph.D. degree. 
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INTRODUCTION 

It. has been suggested that analysis of wave functions will 

be an important aspect of the study of electronic states in the 

next decade. In this paper are presented results of the follow-

ing calculations, which illustrate several aspects of such analysis, 

for crystalline solids: the cohesive energy, pressure, and enthalpy 

of cesium metal as a function of unit cell volume, to show compu­

tationally the isomorphic phase transition of cesium (Cs); mag­

netization and cohesive energy of vanadium (V) as a function of 

lattice parameter, to exhibit the nature of the formal transition 

from non-magnetic to magnetic behavior as the lattice is expanded; 

estimation of momentum matrix elements and interpretation of the 

spectral lineshapes of soft x-ray emission from the valence bands 

of titanium carbide (TiC) a~d niobium carbide (NbC). All of the 

energy-band calculations reported are self-consistent and are 

based on the Xa exchange approximation [1], with no explicit 

inclusion of correlation effects. 

The calculations have been done by the APW (Augmented Plane 

Wave) method of Slater [2], within the muffin-tin approximation [2] 

for the one-electron effective potential and for handling the 

charge density during the generation of that potential in the self­

consistency iterations. (This approximation should be excellent 
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for fcc Cs, with its close-packed structure and metallic valence 

charge distribution, and adequate for bee Cs and V, and for TiC and 

NbC.) Brillouin zone sampling has been done at the equivalent of 256 

equally spaced points in the full zone for the fcc Bravais lattices 

(128 for the bee structures); for the V calculation, additional 

interpolation of the bands has been performed to obtain more accurate 

weighting factors for the contributions of the computed ~-points in 

the charge-density calculation (3) and to estinate electronic densities 

of states. A grid of the equivalent of only 32 equally-spaced points 

is used for states well below the valence bands when only a 

few percent of their charge is outside the APhT spheres (4). 

Wave functions and energies of true core levels are computed in 

atomic fashion, but in the crystal pot ential. The cohesive energy 

is calculated as the difference between the Xa total energy per unit 

cell of the crystal [5] and the XC'. total ene rcy of the isolated atom 

(-15,107.7719 Ry for Cs, -1885.867 Ry for the 6D mUltiple t of V in 

the 3d4 4s1 confi guration, and -18 85.743 Ry for the 4F mult i plet of 

the V 3d3 4s 2 configuration), \. ith the same value of a us ed for both 

the crystal and the atomic calculn tions. (l'iumc rica 1 technique s used 

for the crystal and the atom are made as nearly id0ntical as possible, 

to allo\" maximum cancella t i on of nu;ne r ical errors.) 

The values of a used thrOU Ghout the unit cell for Cs and V and 

in the APH spheres for Ti and C in TiC are those for which the 

statistical (Xa) total energy for the isolated atom equals the 

expectation value of the Hartree-Fock total energy operator with 
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respect to the Xa one-electron orbitals [6). The prescription gives 

a to be 0.69941 for Cs, 0.715 for V, 0.7165 for Ti, and 0.7581 for C. 

a c 2/3 was used between (outside) the spheres for TiC. For NbC, 

h originally suggested by Slater [7J. The a a 1 was used everY'~ ere, as 

" d NbC s110uld be insensitive to the choice results presented for TiC an 

The same is true for the cohesive energies, of a, as shown [4) for TiC. 

as long as the a-variation is not too great and the same value of a 

is used in the. respec tive APlf spheres as for the isolated atoms (to 

of terms arising from the core electrons). allow proper cancellation 

The magne.tization curve calculated for V may show somewhat more 

h this 11as not been computationally verified; dependence on a, thoug 

the form of the curve is expected to be insensitive to a, however. 
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CESIUM 

Cesium metal undergoes a phase transition from bee to fcc 

structure at 23 kbar. At 42 kbar it experiences another phase 

transition, often called isomorphic, in which its unit cell volume 

decreases by about 9% without change of crystal structure [8J. 

Sternheimer [9), in 1949, concluded that the isomorphic transition 

is due to the crossing of the previously unoccupied Sd bands through 

the partially occupied 6s band as the lattic~ constant is decreased. 

More recent calculations by Yarllilshit.'l and As .'lhJ [10) and by Kmc·tko 

[11) have shown that the cesium d-bqnds arc broader than those obtained 

by Sternheimer, indicating that his explanation may hl~ an oVl'rsimpli-

fication. These calculations have also sho~n some VCTY int ~rcslin8 

topological changes in the F(' TOli 1;urfacl' whi<'h art' computN) to occur 

in the range of unit-cell volume across which the phase change. occurs. 

However, they have not included the estimates of coh~sivc l'll('rgy, 

pressure, and enthalpy necessary to detennine if th " computed electronic 

properties do, in fact, give rise to a phase transition. Since the 

Fenniology of Cs has not been experimentally studied at the very high 

pressures at which the transition takes place, there has been no 

conclusive evidence that the calculated "effects actually correspond 
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to the observed phase transition. The work reported here provides 

that evidence by demonstrating that the computed electronic energies 

and wave functions actua lly do lead to an isomorphic phase transition 

at unit cell volumes very near those experimentally associated with 

the isomorphic phase transition of Cs. 

The energy bands found for Cs res emble so closely those 

reported by Yamashita and Asano [lOJ that it is unnecessary to present 

them here. The cohesive energy per atom calculated from these bands 

and from the corre sponding wave functions is shown in Fig. la as a 

function of the volume per pr imi tive unit cell (per atom) for both 

the fcc and the bee structures. The calculated equ~librium 

cohesive energy for the bee phase (-0.061 Ry!atom) is in good agree­

m~nt with the experimental value of -0.062 Ry!atom report ed by Gschneider 

[12J, and the calculated equilibrium unit-cell volume, 780 cubic atomic 

units (Bohr radii), agrees well with the 7l.5 cubic atomic units determined 

experimentally hy Barrett [13). The computed energy curves predict the 

fcc phase to be the 0 K equili br ium phase, in contradiction to the 

experlmenta 1 result s. However, the computed energy difference 

between the fcc and bee phases at the equilibrium voltune is small and 
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may 11ell be due to use cif the muffin-tin approximation. (Since the 

same (fcc) phase prevails on both sides of the high-pressure ' iso­

morphic transition, the errors due to this approximation should be 

nearly identical for the two phases involved and should thus be 

unimportant in the investigation of that transition.) 

It is significant that the Xa calculations do so well for the 

cohesive energy, because the model does not include any explicit 

estimate of the correlation energy. Slater [1] has SU99csted that 

the local (Xa) exchange approximation itself includes certain 

features of correlation. For exa~ole, it leads to the correct 

separated-atom limit for the one-electron eigenvalues and the 

total eriergy, and it treats excited one-electron states in a 

more desirable fashion than is done with the virtual states in 

the Hartree-Fock method. (For instance, the undesirable and 

non-physical vanishing of the free-electron-gas density of states 

at the Fermi energy, which is obtained in the Hartree-Fock approxi­

mations, is eliminated by the local, averaged exchange of the Xa 

method.) It may thus be that the Xa approximation includes 

certain of those features of the correlation correction which are 

most crucial to binding, even though it does not explicitly 

include any correlation term. (For accurate cohesive energies, 

it is only necessary to duplicate the variation of the correlation 

energy as the atoms coalesce into the solid or molecule, not to 
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obtain the total correlation correction.) 

The pressure p on the solid at a given volume V per 

primitive unit cell can be calculated from the non-equilibrium 

virial theorem [14.15J. 

p V = « u > + 2 < T > ) / 3 

which is satisfied identically in the Xa approximation,for the 

statistical (Xa) effective total potential energy < U > and 

kinetic energy < T > per primitive unit cell. Such a calcula­

tion has been performed, and the c6mputed pressure is shown as 

a function of volume in Fig. lb. As a check on the numerical 

accuracy of the calculation. the pressure has also been obtained 

from the relation 

p = - d E / d V 

(1) 

(2) 

(where E is the total or cohesive energy per primitive unit cell). 

which is found to give results i~ good agreement with those shown. 

The bcc p-V curve is found by Averill [16J to be in good agree­

ment with the compression measured by S\~enson [17J at low tempera-

tures. 

It is in the pressure curve for fcc cesium that the first 

clear indication of the isomorphic phase transition appears: the 

curve dips. sho~/ing a clear minimum at a volume of about 350 cubic 
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atomic units (c.a.u.) per atom. From the fcc cohesive energy 

and pressure curves, the enthalpy is obtained, as illustrated 

in Fig. 2. (The relevant computed points are numbered in Fig. la, 

lb. and 2, to facilitate comparison. All pOints with a given 

number corres~ond to a single lattice volume and pressure.) In 

this curve, the transition appears as the intersection of the line 

from point to point 2, with that from 4 to 5. As the 

metal is compressed at 0 K, it must move along the curves from 

point to the point of this intersection on the enthalpy curve 

(about 26 kbar • which corresponds to V = 410 c.a.u.). at 

which point it jumps to the corresponding pOint on the curves 

from point 4 to point 5 (26 kbar • and about 320 c.a.u.). 

follOl'ling the curves to point 5. The 0 K computed isomorphic 

phase transition thus consists of a discontinuous volume change 

from approximately 410 c.a.u. to 320 c.a.u .• at a pressure 

of roughly 26 kbar. There is no experimental data with which 

to compare these results at 0 K , but the volumes are in good 

agreeme nt with the observed room temperature decrease from 

362 c.a.u. to 329 c.a.u. [8J. The calculated pressure of 

26 kbar (for 0 k) is not in such close agreement \vith the 42 kbar 

pressure observed for the transition at the higher temperatures. 

but the calculated pressure is subject to all the errors of the 

model (and is not a variational quantity like the total energy). 
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Furthermore, the computed and experimental results are only partially 

comparable because of the difference in the relevant temperatures. 

Thus, it seems reasonable to assume that the computed transition 

does, in fact, represent the observed isomorphic phase transition 

in cesium, thereby providing justification for the assumptions of 

Yamashita and Asano [10] and Kmetko [11]. 

The APW wave functions are expanded, in each sphere, in 

spherical harmonics, which allows the charge of each state to be 

broken down, inside the spheres, into compone nts assotiated with 

each value of t in the spherical harmo nic expansion [2]. !he 

sums over all occupied valence sta t es of these components is 

indicative of, though not ' identical to, the contributions of the 

corresponding atomic states to the occupied valence states in the 

crystal [4]. These sums together with the amount of valence 

charge outside the spheres, are plotted for Cs in Fig. 3 as a 

function of lattice volume per atom. The behavior of the d-like 

(£=2) part of the valence ch arge reveals an interesting extension 

of Sternheimer's [9J hypothesis regarding the nature of the iso­

morphic phase transition: even though the d-bands are broad, the 

transition appears to be intimately associated with a sharp increase 

in the d-like character of the fcc valence charge, as the lattice 

volume is decreased. This increase (at about 400 c.a.u.) is clearly 

associated with the dip in the pressure curve which occurs at the 
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same atomic volume. Furthermore, the structure (fcc or bce) which 

has more 'd-like charge at any volUlr.e also has the lower c'omputed 

pressure at that volume. Even the topological changes which occur 

in the Fermi surface can be closely correlated with the ki~ks in 

the curve of this d-like charge component [16]. Thus, Sternheimer's 

explanation appears to have a very great deal of truth, if slightly 

generalized to allow for broader d-bands. 
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VANADIUM 

The existence of a stable magnetic moment in an itinerant-

electron ferromagnet requires a high density of states around the 

Fermi energy of the non-Magnetic energy b.ands, a condition which 

is obtained when there are partially filled atomic states having 

relatively small interatomic overlap in the crystal, as in the 3d 

states of iron, nickel , and cobalt [18J. Thus, if the lattice 

of a non-magnetic transition metal with partially filled atomic 

3d level were expanded, the decr~ase in overlap of the d-states 

and the concomitant increase in the density of states might cause 

the material to become magnetic. The spin-polarized Xa method 

has been shown by Connolly [19J and others to be capable of 

explain i ng the behavior of the magnetic transition metals. It has 

therefore bee n employed in an effort to dete rmine the nature of the 

magnetic transition which would occur in V if its lattice could be 

expanded substantially beyond the equilibrium size. The magnetic 

momen t has been calculated as the difference bet,~een the number of 

major1ty-spin and minority-spin electrons per unit cell, with an 

ass umed ferromagnetic arrangemen t of the moments; it is shmffi as a 

function of lattice parameter in Fig. 4. In order to obtain this result, 

the self-consistency iterations were initiated "Hh a net magnetic 

moment (net spin density) at each lattice constant and were continued 

until the net magnetic moment, as well as the individual eigenvalues 

and other indicators of self-consistency, had stabilized. The 

calculation correctly predicts the lack of permanent magnetic moment 

.1 

14 
! I for V at its equilibrium lattice constant, indicated by a

o 
in 

i Fig. 4. The dependence of total energy on magnetization near the 
, 
: transition is apparently extr~m.:!l}' small, as might be expected . This 

'. is evidenced computationally by very slow convergence of the net 

magnetic moment from lattice constants of about 6.3 to about 7.3 atomic 

units (a.u.), which makes it impractical to compute tIle precise nature 

of the magnetization curve in thi s r~g Lon. I~wevcr, it sc~ms clear 

that the curve must be bracketed, in the spin-polarized x~ mod~l, 

by the solid and dashed >l cglncnts of Fig . 4. The lran" ition is ell' ;nly 

rather abrupt, even with the unc('rt ;linty in tlie rc);i on of initi:ll riSe. 

In addition, the tIm calculated pOinl>l :~ hown fOI" a Lilli,'" l'O)Il:;t.')nt of 

7.0 a.u. represent two distinct self-consi"tcnt solutions, ari"inc, 

respectively, from large and sma ll initial llIa!',lh!tic 1:IO r.\('llt for the 

self-consistency iterations. (At no olli('r lUlt ice COIl,a,"ll for 

which calculations were perform('d is thcH! any evilh'm'c lhal thl! final ' 

configuration depends on the asslIml!d initial configur::Jtion.) This 

result appears to indicate the presence of a double minimum in the 

energy versus magnetization curve, for lattice constants near 7 a.u. 

The magnetization curve is drawn through the point jJ "" 2.2 electrons/atom 

for 7.0 a.u. because that pOint corresponds to the configuration of 

lower total energy. 

The cohesive energy of V ,~as calculated, relative to the 

isolated atom in the 3d44sl configuration (the spin-polarized XCX 

atomic ground state and thus the API, separated-atom limit). It is 

plotted as a function of the lattice parameter, in Fig. S. The 

experimental equilibrium cohesive energy [12] is indicated as the error 

bar in Fig. 5, for comparison, as is the experimentally observed 
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equilibrium lattice constant, a
o

' 120J. (The difference between the 

V total energy at its minimum and the spin-polarized Xa energy of the 

4 3 2 . 
F multiplet of the 3d 4s configuration of the isolated V atom 

[which corresponds to the experimental ground state of the atom) is 

-0.45 Ry/atom. Thus, this figure and the equilibrium cohesive energy 

4 I 
calculat ed with reference to the 3d 4s configuration bracket the 

experimental value of the cohesive energy .) The Xa approxirua tion 

thus predicts for V, as for Cs, a cohesive energy, compressibility 

,£3], and lattice constant in good agreement with experiment. 

TIle kink in the cohesive energy curve, near the transition 

point (a ~ 7 a.u.), is indicative of the possibility of a phase 

transition in which a discontinuous volume change is associated with 

the onse t of magne tic polarization. Unfortunately, detailed examina-

tion of this transition wil l probably require more detailed knowledge 

of the cohesive energy a s a function of lattice constant near the 

transition point than is report ed here. 

The densities of states are illustrated in Fig. 6 for two non-

magnetic lattice constants, to show the increasing density of states 

at the Fermi energy \~hich eventually leads to the stability of the 

magnetic state as the lattice constant is further increased . Fig. 7 

shows the spin-polarized densities of states for the majority (a) 

and minority (S) ' spins, for magnetic V at a lattice constant of 8.5 a.u., 

well beyond the transition point. Note that the Fe.rmi en<~rgy has 

passed through a minimum in the majority-spin (a) density of states 

in order to make the transition from the non-magnetic to the magnetized 

state. This may be associated with the phase transition mentioned 

above in which a discontinuous change in lattice con~tant may occur 

- - --- ... ---~---------------.-. 
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at the onset of magnetic behavior.. It is precisely in this region 

of the transition that the minimum in the majority-spin density 

of states must pass through the Fermi energy. 

, . 

__ ~., ____ ~~~~-~------~~~~~--~~~~~~--~~~~~----.J 
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TiC and NbC 

The soft x-ray emission spectra of several of the refractory 

metal carbides and related compounds have been studied extensively 

[21-26) and have received a wide variety of explanations and inter-

pretations. The intent of the pres ent section is to demonstrate 

that an approximate calculation of the lineshapes based on self-

consistent AP~l energy-band calculations for these materials can 

yield unnorma lized curves in good agreement with the experimen-

tally observed spectra. 

The calculation involves several fundamental approximations 

which are relatively commonly used [21-28] but warrant further 

investigation: (1) The localized nature of the initial state 

is ignored. It is assumed that the ene rgy dependence of the 

transition matrix element should be well approximated by that 

matrix clement calculated between the crystalline core and 

va lence- band wave func tions. (2) The dis tortion of the valence 

wave functions, and the resulting energy shifts, \~hich are caused 

by the absence of a core electron in the initial state, are 

ignored. It is assumed that the effect on the matrix clements 

will be small and that, although the effect on the total energy 

is significant, the effect on energy differences .between transi-

tions from different parts of the valence band is negligible . . 

(3) The variation of the vector potential ~ over the dimensions 

P;C 
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of the core wave function is ignored in order to reduce the 

calculation of (Z;!:.) to the calculation of (t). This approxima­

tion is equivalent to ignoring the atomic form factors for these 

x-ray transitions and should certainly be adequate for the COm­

putation of the desired lineshape estimates. 

With these approximations, the matrix element f A b o £:~ etween 

the initial and final states 1s reduced to th i I f e matr X e ement a ~ 

between the one- e lectron core wave function and the valence wave 

function for a state at the desired initial energy. 

sian (inside sphere t), 

'f.(k,r) c 1: 
J~~ 

t,m 

The expan-

for an APW eigenfunction [2,4] of band j and wave vector k then 

allows the usual atomic selection rules to be utilized to reduce 

the sununations over 1, and m. ( I h . m n t e expanslon, Y1, is a spheri-

cal harmonic, R1, a radial function.) Examination of the radial 

functions R
t 

for the materials of interest shows that their 

energy dependence, over the range of valence-band energies, is 

negligible. Furthermore, for these materials, a single value 

of t do:ninates for each x-ray transition. The fractional varia-

tion in the frequency of x-rays emitted by valence electrons, as 

they drop into a given core level, is also negligi ble. Thus. 

the energy dependence of the x-ray intensity density is well 

. ,.- " 1":: ", 
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approximated (in the model assumed) by 

lim (lIE)-l E Ict (j,~) 12 x constant 
till-O states j . L,m 

E 
Sheets j 

of 
Fermi 
Surf. 

in 
lIE 

JS dSj 

!,Y, ~ E j (!9 ! 
JC: (j,k)!2xconstant, 

N,m ,-...J 

for a single polarization and direction of the emitted x-ray. 

In this expression, 

1 for K-emission (meta l or non-metal) 

2 for L-emission (metal) 

1 for H-emission (metal), 

m is determined by the x-ray polarization (as sumed to be circu-

lar or para llel to the z axis), and the expansion coefficients 

Ct 
bn 

are tho se for the IIl'W sphere t around the atom in which the 

transition occurs. For unpol a ri zed x-rays averaged over all 

angles of emission, the expression becomes proportional to the 

"partial density of states," 

IS L: 
Sheets 

which is just the expression for density of states except that 

• 14*9 
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the contribution of eaeh state is weighted by the J,-component of 

its charge in the sphere t of interest [4]. This information is 

readily available from a self-consistent API, calculation. 

The experimental data are reproduced in Fig. 8 and 9. In 

Fig. 10 is shOlm the decomposition of the Ti-LU,III emission 

from TiC, based on the assumption that the two components have 

the same shape and are separated in energy by the atomic Ti-L
II

, 

Ti-L
III 

splitting. The experimental spectra are compared to the 

computed spectra (arbitrary units for both, no broadening included 

in the computed curves) in Fig. 11-13 for TiC and in Fig. 14-16 

for NbC. In all cases, the calculated Fermi energy has been made 

coincident with the experimentally detennined Fermi energy. Fo~ 

TiC, the curves are also shotm with a relative shift of 0.6 eV 

from th{s position (dashed curves in Fig. 11 and 13, dot-dash 

in Fig. 12) which gives even better agreC'ment. The shift to the 

dashed curve for Nb-MIV,V is to correct for a calibration error 

in Holliday's data, ,·,hieh ,~as reported by Ramqvist, et. al. [25). 

The agreement in all curves is seen to be excellent, if allowance 
., 

is made for the broadening in the experimental data, which is 

not included in the theoretical curves. 

~ -.. - ... - ... .......... '. P-'-=.:::.-...:.-.:.:..~-----~------..: 
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CONCLUSION 

d tll~t analysis of the one-electron It has been demonstrate u 

wave functions and energies calculated in the Xa approximation 

can provide a basis for understanding a number of the physical pro­

perties of crystalline solius, including cohesion, p-V relation-

i i X-ray spectra and magnetic properties shi ps, and pha,;e trans tons. 

have also been studied in the context of this approximation, to 

demonstrate their relationship to the energy-band properties 

of materials. The extension and refinement of studies of this 

t of the I'perspec tives for calculation general nature forms one aspec 

in ordered and disordered solids". of electronic properties 

',', .... ,. ,., ,_ .. ... -....... -.. ~ .... . ... .... -.. .. ~ , . ...... ~ 
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FIGURE CAPTIONS 

FIG. 1. (a) The cohesive energy of cesium metal as a function 

of primitive unit cell volume for the bec and fcc lattices. 

(b) The pressure required to compress cesium to the 

indicated unit cell volume, as determined from the non­

equili brium vi rial theo rem. 

In both (a) and (b) the circles and squares represent, 

respectively, the calculated values for the fcc and bcc 

structures. The dashed and solid curves arc drawn to 

connect the calculated points. 

FIG. 2. The cnthalpy calculated for fcc Cs for prcssun~5 ne:lr 

those of the comput ed isomorphic transition. The circles 

are the calculat ed points, which have simply been connected 

by straight line segments. 

FIG. 3. Components of the Cs valence charge inside the APW 

spheres correspondinG to the J - 0, 1, and 2 spherical 

hamonics, and the component outside the spheres. The 

h - 2 (d-like) component is found to be closely related 

to the isomorphic tran s ition, the cornpresl':ion, and the 

topological changes I·.'hich occur in the Fermi surface. 

FIG. 4. CompuLed magnetic moment of vanadium metal as a 

function of its lattice parameter, showing the abrupt 

transition from non-magnetic to magnetic behavior. The 

dashed and solid curves bracket the beh.:lvior ncar the 
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transition point. Either of the two magnetic moments calcula-

ted for a = 7.0 a.u. is obtained, depending on the magnitude 

of the initial assumed maeneti c moment in the self-consis-

tency iterations. 

FIG. 5. Cohesive energy calculated for V, as a function of lattice 

parameter. The error bar indicates the experimental equili-

briurn lattice constant and cohesive energy, for comparison. 

FIG. 6. Non-magnetic densities of states, showing the increa se in 

the density of states at the Fermi energy which eventually 

gi ve s rise to magnetic behavior as the lat tice parameter 

is increased further. 

FIG. 7. Hagnetic densiti es of states [or a '" 8.5 a.u., for 

ma jority (0') and minori.ty (13) sp in, showing exchange shift 

between corr espo ndi ng states with opposite spin, in the 

magnet ic state. 

FIG. 8. Soft X-ray emiss io n spec tra from TiC: C - K (solid 

curve), Ti - K (dott ed), and Ti-LII,III (dashed) spectra, 

as rcport ~d in r eferences [ 22J , [21J, and [23J, r espe ctively. 

FIG. 9. Soft x-ray emission spectra from NbC: C - K, Nb - L
III

, 

FIG. 

and 'Nb - }lIV,V' [rom reference [25J. 

10. Decomposition of the Ti-Ln,III emission spectrum from 

TiC into separate, proportional LII and LIII components, 

separated by the energy splitting betHeen the atomic LII 

and LIn peaks. 
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FIG. 11. Experimental C-K emission (smooth curves) from TiC, 

according to Holliday [22] as reported by Ramqvist et a1. 

[21], and C - tel partial density of states. Dashed curve 

corresponds to an 0.6 eV adjustment in relative Fermi energies. 

FIG .. 12. Experimental Ti-K emission curves and calculated Ti-t = 1 

partial density-of- sta t e s histo gr am for TiC. Dotted curve is 

from Nemnonov and Kolobova [2 6 J~ Solid is uncorrected and 

dashed is corrected data from Ramqvist, et al. [21]. Dot-

dash curve is obtained from shifting dashed curve by 0.6 eV. 

FIG. 13. Ti - LIl (from Fischer [23J) ('m ission (smooth curves) 

and Ti-! = 2 curves for TiC. Result of 0.6 eV shift is 

shown as dashed curve. 

FIG. 14. Comparison of C - t = 1 partial density of states (histo­

gram) for NbC \~ith the C-K emission (smooth curve) reported 

by Ramqvist, et al. [25J. 

FIG. 15. NbC Nb - LIII emiSSion, from Ramqvist, et al. [25J, 

compared \dth the Nb-t = 2 partial density of states. 

FIG. 16 . Partial Nb - MIV,V emission, from Holliday [25J, and 

Nb - t = 1 partial density of states. Dashed curve shows 

correction for apparent spectrometer cnllibratlon error, 

reported by Ramqvist et a1. [25 J. An additional peak in 

the spectrum has now been observed [24], in good agreement 

with the partial-density-of-states peak at about -11 eV. 

Separation of the tHO Nb-H peaks ShOWll is also the energy 
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difference between the Mrv and the My transition, which 

renders the interpretation of this curve less certain than 

1s the case for the others shown. 
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