s ] B
E e f (& &Pf nT
B n LS
- . o e LA . )
) Submitted to Journal de Physique for publicatioﬁ in the 1972 {ssuea:
devoted to the conference “Perspectives for Computation of Electronic )
Structure in Ordered and Disordered Solids."

Three Aspects of the Computation of Electronic Structures of . expression for the energy dependence of the soft x-ray valence-

tetals at the University of Florida: Isomorphic Phase Transi= , - band emission in terms of partial densities of states, allowing
tion and Cohesive Energy in Cs; Vanadium Non-Magnetic to Mag- ' interpretation of the experimental data in terms of the calculzted
netic Transition with Lattice Size; and Soft X-Ray Emission . electronic properties.

sﬁeetra of TiC and Nbc.*f A
; by
James B, Conklin, Jr., Frank W. Averill, and Thomas M, Hattox
Quantum Theory Project,
Department of Physics and Astronomy,

University of Florida, Gainesville, Florida 32601, U,S.A.

ABSTRACT

Self-consistent Apw calculations have becen performed to
provide electron eigenvalues and wave functions for several
bsystems. within the Xoa approximation for fhe exchange and
within the muffin-tin approximation for generating and utiliiing~

the effective onc-electron potential. This information has been

used to calculate cohesive energies for metallic cesium and *Supported in part by the National Science Foundation.

vanadium and to calculate the isomorphic phase transition of

fBased in part on dissertations presented by F. W. Averill
um. The formal magnetization of vanadium as a f i

| cesi g a function of and T. M. Hattox to the Department of Physics and Astronomy,

ti ieter has been examined and i = :
i SIS RN Wl University of Florida, in partial fulfillment of the
tion found. Momentum matrix elements for titanium carbide and "

requirements for the Ph.D. degree.

niobium carbide have been estimated to provide an approximate
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INTRODUCT ION

It has been suggested that analysis of wave functions will

be an important aspect of the study of electronic states in the

next decade. 1In this paper are presented results of the follow-

ing calculations, which i]]ustrafe several aspects of such analysis,
for crystalline solids: the cohesive energy, pressure, and enthé]py
of cesium metal as a function of unit cell vb]ume. to show compu-
tationally the isomorphic phase transition of cesium (Cs); mag-
netization and cohesive energy of vanadium (V) as a function of
lattice parameter, to exhibit the nature of tHe formal transition
from non-magnetic to magnetic behavior as the lattice is expanded;
estimation of momentum matrix elements and interpretation of the
spectral lineshapes of soft X-ray emission from the valence bands
of titanium carbide (TiC) ahd'niobium carbide (NbC)., A1l of the
energy-band calculations reported are self-consistent and are
based on the Xa exchaﬁge approximation [1], with no explicit

inclusion of correlation effects.

The calculations have been done by the Apw (Augmented Plane

Wave) method of Slater [2], within the muffin-tin approximation [2]

for the one-electron effective potential and for handling the

charge density during the generation of that potential in the self-

consistency iterations. (This approximation should be excellent

for fcc Cs, with its close—packed structure and metallic valence
charge distribution, and adequate for bcc Cs and V, and for TiC and
NbC.) Brillouin zone sampling has been done at the equivalent of 256
equally spaced points in the full zone for the fcc Bravais lattices
(128‘for the bee structures); for the V calculation, additional
interpolation of the bands has been performed to obtain more accurate
weighting factors for the contributions of the computed k-points in

the charge-density calculation [3] and to estimate electronic densities
of states. A grid of the equivalegt of only 32 equally-spaced points

is used for states well below the valence bands when only a

few percent of their charge is outside the APW spheres [4].

Wave functions and energies of true core levels are computed in

atomic fashion, but in the crystal potential. The cohesive energy

is calculated as the difference between the Xu total energy per unit
cell of the crystal [5] and the Xo total encrgy of the isolated atom
(-15,107.7719 Ry for Cs, -1885.867 Ry for the 6D multiplet of V in
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the 3d 451 configuration, and -1885.743 Ry for the 4F multiplet of

the V 3d 4s2 configuration), with the same value of & used for both

the crystal and the atomic calculations. (Numerical techniques used

for the crystal and the atom are made as necarly identical as possible,
to allow maximum cancellation of numerical errors.)

The values of a used throughout the unit cell for Cs and V and
in the APW spheres for Ti and C in TiC are those for which the
statistical (Xa) total energy for the isolated atom equals the

expectation value of the Hartree-Fock total energy operator with
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respect to the Xa one-electron orbitals [6]. The prescription gives
a to be 0.69941 for Cs, 0.715 for V, 0.7165 for T4, and 0.7581 for C.
o = 2/3 was used between (outside) the spheres for TiC. For NbC,
& = 1 was used everywhere, as originally suggested by Slater [7]. The
results presented for TiC and NbC should be insensitive to the choice
of a, as shown [4] for TiC. The same is true for the cohesive energies,
as long as the a-variation is not too great and the same value of a
is used in the respective APV spheres as for the isolated atoms (to
allow proper cancellation of terms arising from the core electrons).
The maguetization curve calculated for V may show somewhat more
dependence on a, though this has not been computationally verified;

the form of the curve is expected to be insensitive to ¢, however.

CESIUM

Cesium metal undergoes a phase transition from becc to fce
structure at 23 kbar. At 42 kbar it experiences another phase
transition, often called isomorphic, in which its unit cell volume
decreases by about 9% without change of crystal structure [8].
Sternheimer [9], in 1949, concluded that the isomorphic transition
is due to the crossing of the previously unoccupied 5d bands through
the partially occupied 6s band as the lattice constant is decreased.
More recent calculations by Yamashita and Asano [10] and by Kmetko
[11] have shown that the cesium d-bands are broader than those obtaincd
by Sternheimer, indicating that his explanation may be an oversimpli-
fication, Thgse calculations have also shown some very interesting
topological changes in the Fermi surface which are computed to occur
in the range of unit-cell volume across which the phase change §ccurs.
However, they have not included the estimates of cohesive cnergy,
pressure, and enthalpy necessary to determine if the computed electronic
properties do, in fact, give rise to a phase transition. Since the
Fermiology of Cs has not been experimentally studied at the very high
pressures at which the transition takes place, there has been no

conclusive evidence that the calculated effects actually correspond




to the observed phase transition. The work reported here provides
that evidence by demonstrating that the computed electronic energies
and wave functions actually do lead to an isomorphic phase transition
at unit cell volumes very near those experimentally associated with
the isomorphic phase transition of Cs.

The energy bands found for Cs resemble so closely those
reported by Yamashita and Asano [10] that it is unnecessary to present
them here. The cohesive energy per atom calculated from these bands
and from the corresponding wave functions is shown in Fig. la as a
function of the volume per primitive unit cell (per atom) for both
the fcec and the bee structures. The calculated equilibrium
cohesive energy for the becc phase (=0.061 Ry/atom) is in good agree-
ment with the experimental value of -0.062 Ry/atom reported by Gschneider
{12], and the calculated equilibrium unit-cell volume, 780 cubic atomic
units (Bohr radii), agrees well with the 745 cubic atomic units determined
experimentally by Barrett [13]. The computed energy curves predict the
fcc phase to be the O K equilibrium phase, in contradiction to the
experimental results., However, the computed energy difference

between the fcc and bec phases at the equilibrium volume is small and

may well be due to use of the muffin-tin approximation. (Since the
same (fcc) phase prevails on both sides of the high-pressure iso-
morphic transition, the errors due to this approximation should be
nearly identical for the two phases involved and should thus be
unimportant in the investigation of that transition.)

It is significant that the Xa calculations do so well for the
cohesive energy, because the model does not include any explicit
estimate of the correlation energy. Slater [1] has suoqaested that

the local (Xa) exchange approximation itself includes certain

" features of correlation. For example, it leads to the correct

separated-atom 1imit for the one-clectron eigenvalues and the
total energy, and it treats excited one-electron states in a

more desirable fashion than is done with the virtual states in

the Hartree-Fock method. (For instance, the undesirable and
non-physical vanishing of the freec-electron-gas density of states
at the Fermi energy, which is obtained in the Hartree-Fock approxi-
mations, is eliminated by the local, averaged exchange of the Xo
method.) It may thus be that the Xo approximation includes
certain of those features of the correlation correction which are
most crucial to binding, even though it does not explicitly
include any correlation term. (For accurate cohesive energies,

it is only necessary to duplicate the variation of the correlation

energy as the atoms coalesce into the solid or molecule, not to




obtain the total correlation correction,)
The pressure p on the solid at a given volume V per
primitive unit cell can be calculated from the non-equilibrium

virial theorem [14,15],
pV = {2llis « 2<T>) 73 , )

which is satisfied identically in the Xo approximation,for the
statistical (Xa) effective total potential energy < U > and
kinetic energy < T > per primitive unit cell. Such a calcula-
tion has been performed, and the computed pressure is shown as

a function of volume in Fig. 1b. As a check on the numerical

accuracy of the calculation, the pressure has also been obtained

from the relation
p = -dE/dV (2)

(where E 1is the total or cohesive energy per primitive unit cell),
which is found to give results in good agreement with those shown.
The bce p-V curve is found bj Averill [16] to be in good agree-
ment with the compression measured by Swenson [17] at Tow tempera-
tures.

It is in the pressure curve for fcc cesium that the first
clear indication of the isomorphic phase transition appears: the

curve dips, showing a clear minimum at a volume of about 350 cubic
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atomic units (c.a.u.) per atom. From the fcc cohesive energy
and pressure curves, the enthalpy is obtained, as 11lustrated

in Fig. 2. (The relevant computed points are numbered in Fig. la,
1b, and 2, to facilitate comparison. A1l points with a given
number correspond to a single lattice volume and pressure.) In
this curve, the transition appears as the intersection of the line
from point 1 to point 2 , with that from 4 to 5 . As the
metal is compressed at 0 K, it must move along the curves from
point 1 to the point of this intersection on the enthalpy curve
(about 26 kbar , which corresponds to V = 410 c.a.u.), at

which point it Jjumps to the corresponding point on the curves
from point 4 to point 5 (26 kbar , and about 320 c.a.u.),
following the curves to point 5 . The 0 ¥ computed isomorphic
phase transition thus consists of a discontinuous volume change
from approximately 410 c.a.u. to 320 c.a.u, , at a pressure

of roughly 26 kbar . There is no experimental data with which
to compare these results at 0 K, but the volumes are in good
agreement with the observed room temperature decrease from

362 c.a.u. to 329 c.a.u. [8]. The calculated pressure of

26 kbar (for0K) is not in such close agreement with the 42 kbar
pressure observed for the transition at the higher temperatures,
but the calculated pressure is subject to all the errors of the

model (and is not a variational quantity like the total energy).
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Furthermore, the computed and experimental results are only partially

comparable because of the difference in the relevant temperatures.
Thus, it seems reasonable to assume that the computed transition
does, in fact, represent the observed isomorphic phase transition
in cesium, theréby providing justification for the assumptions of
Yamashita and Asano [10] and Kmetko [11].

The APw wave functions are expanded, in each sphere, 1in
spherical harmonics, which allows the charge of each stafe to be
broken down, inside the spheres, into components associated with
each value of £ 1in the spherical harmonic expansion [2]. The
sums over all occupied valence states of these components is
indicative of, though not identical to, the contributions of the
corresponding atomic states to the occupied valence states in the
crystal [4]. These sums together with the amount of valence
charge outside the spheres, are plotted fqr Cs 1in Fig. 3 as a
function of lattice volume per atom. The behavior of the d-like
(2=2) part of the valence charge reveals an interesting extension
of Sternheimer's [9] hypothesis regarding the nature of the iso-

morphic phase transition: even though the d-bands are broad, the

transition appears to be intimately associated with a sharp increase

in the d-Tike character of the fcc valence charge, as the lattice

volume is decreased. This increase (at about 400 c.a.u.) is clearly

associated with the dip in the pressure curve which occurs at the
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same atomic volume. Furthermore, the structure (fcc or bce) which
has more d-1ike charge at any volume also has the lower computed
pressure at that volume. Even the topological changes which occur
in the Fermi surface can be closely correlated with the kirks in

the curve of this d-like charge component [16]. Thus, Sternheimer's
explanation appears to have a very great deal of truth, if slightly

generalized to allow for broader d-bands.




13
VANADIUM

The existence of a stable magnetic moment in an itinerant-
electron ferromagnet requires a high density of states around the
Fermi energy of the non-magnetic energy bands, a condition which
i{s obtained when there are partially filled atomic states having
relatively small interatomic overlap in the crystal, as in the 3d
states of iron, nickel, and cobalt [18]. Thus, if the lattice
of a non-magnetic transition metal with partially filled atomic
3d level were expanded, the decrease in overlap of the d-states
and the concomitant increase in the density of states might cause
the material to become magnetic. The spin-polarized Xa method
has been shown by Connolly [19] and others to be capable of
explaining the behavior of the magnetic transition metals. It has
therefore been employed in an effort to determine the nature of the
magnetic transition which would occur in V if its lattice could be
expanded substantially beyond the equilibrium size. The magnetic
moment has been calculated as the difference between the number of
majority-spin and minority-spin electrons per unit cell, with an
assumed ferromagnetic arrangement of the moments; it is sﬁown as a
function of lattice parameter in Fig. 4. In order to obtain this result,
the self-consistency iterations were initiated wvith a net magnetic
moment (net spin density) at each lattice constant and were continued
until the net magnetic moment, as well as the individual eigenvalues
and other indicators of self-consistency, had stabilized. The

caleculation correctly predicts the lack of permanent magnetic moment

E 14
;for V at its equilibrium lattice constant, indicated by a, in
|
iFig. 4. The dependence of total energy on magnetizacién near the
;tranéition is apparently extremely small, as might be expected. This
1s evidenced computationally by very slow convergence of the net
magnetic moment from lattice constants of about 6.3 to about 7.3 atomic
units (a.u.), which makes it imprncticnl to compute the precise nature
of the magnetization curve in this region. llowever, it scems clear
that the curve must be bracketed, in the spin-polarized Xa model,
by the solid and dashed segments of Fig. 4. The transition is clearly
rather abrupt, even with the uncertainty in the region of initial rise.
In addition, the two calculated points shown for a lattice constant of
7.0 a.u. represent two distinct self-consistent solutions, arising,
respectively, from large and small initial magnetic moment for the
self-consistency iterations. (At no other lattice constant for
which calculations were performed is there any evidence that the final
configuration depends on the assumed initial configuration.) This
result appears to indicate the presence of a double minimum in the
energy versus magnetization curve, for lattice constants near 7 a.u.
The magnetization curve is drawn through the point p = 2.2 electrons/atom
for 7.0 a.u. because that point corresponds to the configuration of
lower total energy.

The cohesive energy of V was calculated, relative to the
isolated atom in the 3d445l configuration (the spin-polarized Xa
atomic ground state and thus the APW separated-atom limit). It is

plotted as a function of the lattice parameter, in Fig. 5. The

experimental equilibrium cohesive ecnergy [12] is indicated as the error

‘bar in Fig. 5, for comparison, as is the experimentally observed
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equilibrium lattice constant, ao, [20]. (The difference between the
V total energy at its minimum and the spin-polarized Xo energy of the
4F multiplet of the 3d34s2 configuration of the isolated V atom
[which corresponds to the exﬁetiméntal ground state of the atom] is
-0.45 R;/atom. Thus, this figure and the equilibrium cohesive enérgy
calculated with reference to the 3d4 431 configuration bracket the
experimental value of the cohesive energy.) The Xo approximation
thus predicts for V, as for Cs, a cohesive energy, compfessibility
[3], and lattice constant in good agreement with experiment.

The kink in the cohesive encrgy curve, near the transition
point (a » 7 a.u.), is indicative of the possibility of a phase
transition in which a discontinuous volume change is associated with
the onset of magnetic polarization. Unfortunately, detailed examina-
tion of this transition will probably require more detailed knowledge
of the cohesive energy as a function of lattice constant near the
transition boint than is reported here.

The densities of states are illustrated in Fig. 6 for two non-
magnetic lattice constants, to show the increasing density of states
at the Fermi energy which eventually leads to the stability of the
magnetic state as the lattice constant is further increased. Fig., 7
shows the spin-polarized densities of states for the majority (o)
and minority (8) spins, for magnetic V at a lattice constant of 8.5 a,u.,
weli beyond the transition point, Note that the Fermi energy has
passed through a minimum in the majority-spin (a) density of states
in order to make the transition from the non-magnetic to the magnetized
state. This may be associated with the phase transition mentioned

above in which a discontinuous change in lattice constant may occur
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at the onset of magnetic behavior. It is precisely in this region
of the transition that the minimum in the majority-spin density

of states must pass through the Fermi energy.
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TiC and NbC

The soft x-ray emission spectra of several of the refractory
metal carbides and related compounds have been studied extensively
[21-26] and have received a wide variety of explanations and inter-
pretations. The intent of the present section is to demonstrate
that an approximate calculation of the lineshapes based on self-
consistent APW ene¥gy-band calculations for these materials can
yield unnormalized curves in good agreement with the exécrimen-
tally observed spectra.

The calculation involves several fundamental approximations
which are relatively commonly used [21-28] but warrant further
investigation: (1) The localized nature of the initial state
is ignored. It is assumed that the energy dependence of the
transition matrix element should be well approximated by that
matrix element calculated between the crystalline core and
valence-band wave functions. (2) 7The distortion of the valence
wave functions, and the resulting encrgy shifts, which are caused
by the absence of a core electron in the initial state, are
ignored. It is assumed that the effect on the matrix elements
will be small and that, although the effect on the total cnergy
is significant, the effect on energy differences between transi-
tions from different parts of the valence band is negligible. .

(3) The variation of the vector potential A over the dimensions
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of the core wave function is ignored in order to reduce the
calculation of {E:f9 to the calculation of (2). This approxima-
tion is equivalent to ignoring the atomic form factors for these
Xx-ray transitions and should certainly be adequate for the com-

putation of the desired lineshape cstimates.

With these approximations, the matrix element of P-A between
the initial and final states is reduced to the matrix element of R,
between the one-electron core wave function and the valence wave
function for a state at the desired initial energy. The expan=-

sion (inside sphere t),
t m
I L CE R AR U RGO

for an APW eigenfunction [2,4] of band j and wave vcctor k then

allows the usual atomic selection rules to be utilized to reduce

m
2

cal harmonic, RE a radial function.) Examination of the radial

the summations over £ and m. (In the expansion, Y ' is a spheri-
functions RZ for the materials of interest shows that their
energy dependence, over the range of valence-band energies, is
negligible. Furthermore, for these materials, a single value

of £ dominates for cach x-ray transition. The fractional varia-
tion in the frequency of x-rays emitted by valence electrons, as
they drop into a given core level, is also negligible. Thus,

the energy dependence of the x-ray intensity density is well
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approximated (in the model assumed) by

1im (AE)-I 2 lci m (3K ? % constant
AE -0 states § 3
in
AR
de
= t 2
Shgets k| Icz m(J.E)l x constant,
of 2\ 50l .
Fermi =
Surf.

for a single polarization and direction of the emitted x-ray.

In this expression,

£ = 1 for K-emission (metal or non-metal)
2 for L-emission (metal)

1 for M-emission (metal),

m is determined by the x-ray polarization (assumed to be circu-

lar or parallel to the z axis), and the expansion coefficients

C;m are those for the APW sphere t around the atom in which the

transition occurs. For unpolarized x-rays averaged over all

angles of cmission, the expression becomes proportional to the

"partial density of states,"

ds
25 ® = I [ —— zIc  awl?
Sheets Iz-k Ej(E)I m ,

which is just the expression for density of states except that
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the'contribution of each state is weighted by the f-component of
its charge in the sphere t of interest [4]. This information is
readily available from a self-consistent APW calculation,

The experimental data are reproduced in Fig. 8 and 9. 1In
Fig. 10 is shown the decomposition of the Ti_LII,III emission
from TiC, based on the assumption that the two components_have
the same shape and are separated in energy by the atomic Ti-LII,
Ti-LIII splitting. The experimental spectra are compared to the
computed spectra (arbitrary units for both, no broadening included
in the computed curves) in Fig. 11-13 for TiC and in Fig. 14-16
for NbC. 1In all cases, the calculated Fermi energy has been made
coincident with the experimentally deternnined Fermi energy. For
TiC, the curves are also shown with a relative shift of 0.6 eV
from this position (dashed curves in Fig. 11 and 13, dot-dash
in Fig. 12) which gives even better agrecment. The shift to the

dashed curve for Nb-MI is to correct for a calibration error

v,V
in Holliday's data, which was reported by Ramqvist, et. al. [25].
The agreement in all curves is scen to be excellent, if allowance

k]

is made for the broadening in the experimental data, which is

not included in the theorectical curves.

St e s e i
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CONCLUSION

It has been demonstrated that analysis of the one-electron
wave functions and energies calculated in the Xo approximation
can provide a basis for understanding a number of the physical pro-
perties of crystalline solids, including cohesion, p-V relation-
ships, and phase transitions. X-ray spectra and magnetic properties
have also been studied in the context of this approximation, to
demonstrate their relationship to the energy-band properties
of materials. The extension and refinement of studies of this
general nature forms one aspect of the "perspectives for calculation

of electronic properties in ordered and disordered solids".
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FIGURE CAPTIONS

1. (a) The cohesive energy of cesium metal as a function
of primitive unit cell volume for the bcc and fcec lattices.

(b) The pressure required to compress cesium to the
indicatcd unit cell volume, as determined from the non-
equilibrium virial theorem.

In both (a) and (b) the circles and squares rcpresent,
respectively, the calculated values for the fcc and bece
structures. The dashed and solid curves are drawn to
connect the calculated points.

2. The enthalpy calculated for fcc Cs for pressures near
those of the computed isomorphic transition. The circles
are the calculated points, which have simply been connected
by straight line scgments.

3. Components of the Cs valence charge inside the APW
spheres corresponding to the £ = 0, 1, and 2 spherical
harmonics, and the component outside the spheres. The

A =2 (d-like) component is found to be closely related
to the isomorphic transition, the compression, and the
topological changes which occur in the Fermi surface.

4. Computed magnetic moment of vanadium mectal as a
function of its lattice paramcter, showing the abrupt
transition from non-magnetic to magnetic behavior. The

dashed and solid curves bracket the behavior near the
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transition point. Either of the two magnetic moments calcula-
ted for a = 7.0 a,u. is obtained, depending on the magnitude
of the initial assumecd magnetic moment in the self-consis-
tency iterations.

5. Cohesive energy calculated for V, as a function of lattice
parameter. The error bar indicates the experimental equili=-
brium lattice constant and cohesive energy, for comparison.

6. Non-magnetic densities of states, showing the increase in
the density of states at the Fermi energy which eventually
gives rise to magnetic behavior as the lattice parameter

is increased further.

7. Magnetic densitics of states for a = 8.5 a.u., for
majority (o) and minority (B) spin, showing exchange shift
between corresponding states with opposite spin, in the
magnetic state,

8. Soft X-ray emission spectra from TiC: C - K (solid

curve), Ti - K (dotted), and Ti-L (dashed) spectra,

11,111
as reported in references [22], [21), and [23], respectively.

9. Soft x-ray emission spectra from NbC: C - K, Nb = LIII’

and Nb - M from reference [257.

TV

10. Decomposition of the Ti-L

II,III.emi551°n spectrum from

TiC into separate, proportional LI and LII components,

I L

separated by the energy splitting between the atomic LII

and LIII peaks.
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11. Experimental C-K emission (smooth curves) from TiC,
according to Holliday [22] as reported by Ramqvist et al.

[21], and C - £ = 1 partial density of states. Dashed curve
corresponds to an 0.6 eV adjustment in relative Fermi energies.
12..Experimenta1 Ti-K emission curves and calculated Ti-£ = 1
partial density-of-states histogram for TiC. Dotted curve is
from Nemnonov and Kolobova [26]. Solid is uncorrected and
dashed is corrected data from Ramqvist, et al. [21]. Dot-
dash curve is obtained from shifting dashed curve by 0.6 eV.
13, Tt = Lys (from Fischer [23]) cmission (smooth curves)

and Ti-g = 2 curves for TiC. Result of 0.6 eV shift is

shown as dashed curve.

14. Comparison of C - £ = 1 partial density of states (histo-
gram) for NbC with the C-K emission (smooth curve) reported

by Ramqvist, et al. [25].

15. NbC Nb - L

111
compared with the Nb-£ = 2 partial density of states.

emission, from Ramqvist, et al. [25],

16. Partial Nb - M emission, from lolliday [25], and

IV V
Nb - £ = 1 partial density of states. Dashed curve shows
correction for apparent spectrometer callibration error,
reported by Ramqvist et al. [25). An additional peak in
the spectrum has now been observed (247, in good agreement

with the partial-density-of-states pecak at about -11 eV.

Scparation of the two Nb-M peaks shown is also the energy
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difference between the MIV and the “V transicio_n, which
renders the interpretation of this curve less certain thanm ) i

is the case for the others shown. . :
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FIG. 10. TiC Ti-L decomposition.
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C-K emission from TiC.

Ti-K emission from TiC,
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